Prove that tan A/ (1-cot A) +cot A / (1-tan A) = sec A cosec A+1
Problem
Question
Prove that tan A/ (1-cot A) +cot A / (1-tan A) = sec A cosec A+1
Trigonometry Problems
- If tan(theta)=1/√7, Evaluate (cosec^2 (theta)-sec^2 (theta)/ (cosec^2 (theta)+sec^2 (theta))
- If 3 tan(theta) = 4, find the value of (5 sin(theta)-3cos(theta)) / (5 sin(theta)+2cos(theta))
- If sec(theta)=sqrt(2), Evaluate (1+tan(theta)+cosec(theta))/(1+cot(theta)-cosec(theta))
- If 3 cot A = 4, Check whether (1-tan^2A)/(1+tan^2A) = cos^2 A – sin^2 A or not
- Prove that tan A/ (1-cot A) +cot A / (1-tan A) = sec A cosec A+1
- If tan(theta) + cot(theta)=5, find the value of tan^2 (theta)+cot^2 (theta)
- Prove that sqrt((1-sin(theta))/(1+sin(theta))) = sec(theta) – tan(theta)
- If sec A + tan A=7, find the value of sec A – tan A
- Given that tan (theta) = p/q. Find the value of (p sin(theta)-q cos (theta)) / (p sin (theta)+q cos (theta))
- If tan A=1/2 and tan B=1/3 then find the value of sin(A+B) using the formula: tan(A+B)=(tan A + tan B)/(1-tan A tan B)