Evaluate lim (x→0) (sinh x – x) / ( sin x – x cos x)
Question
Solution
Question
Evaluate lim (x→0) (sinh x – x) / ( sin x – x cos x)
Type 1 Problems
- Evaluate lim (x→0) (x e^x -log(1+x)) / x^2
- Evaluate lim (x→π/2) log(sin x) / (π – 2x)^2
- Evaluate lim (x→0) (sinh x – x) / ( sin x – x cos x)
- Evaluate lim (x→π/2) log(x-π/2) / tan x
- Evaluate lim (x→0) [a/x – cot x/a]
- Evaluate lim (x→0) [1/x – log(1+x)/x^2]
Type 2 Problems
- Evaluate lim x -> 0 (tan x – x)/(x ^ 2 * tan x)
- Evaluate lim (x->0) (x ^ 2 + 2 cos x – 2 ) / ( x sin^3 x)
- Evaluate lim (x->0) ((1/x^2)-(1/sin^2 x))
- Evaluate lim (x->0) ((1/x^2)-(cot^2 x))
- Evaluate lim (x->0) ((e^x – e^(-x) – 2 log(1+x)) / (x sinx) )
- Evaluate lim (x->0) ( (1 + sinx – cosx + log(1-x)) / (x tan^2 x) )
Type 3 Problems
- Evaluate lim(x→π/2)(sinx)^(tanx)
- Evaluate lim(x→0) (tanx/x)^(1/x)
- Evaluate lim(x→0) ((a^x+b^x)/2)^(1/x)
- Evaluate lim(x→0) ((a^x+b^x+c^x)/3)^(1/x)
- Evaluate lim(x→0) ((a^x+b^x+c^x+d^x)/4)^(1/x)
- Evaluate lim(x→0) [(sin^2(π/(2-x))]^sec^2(π/(2-x))
Related Topics
- Trigonometry Formula
- Differentiation Formula List
- Taylor’s Theorem, Taylor’s Series
- Maclaurin’s Theorem, Maclaurin’s Series
- Indeterminate Forms